Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The limit lim limits x arrow ∞ x[ tan -1((x+1/x+2))- tan -1((x/x+2))] is equal to
Q. The limit
x
→
∞
lim
x
[
tan
−
1
(
x
+
2
x
+
1
)
−
tan
−
1
(
x
+
2
x
)
]
is equal to
1667
189
Inverse Trigonometric Functions
Report Error
A
2
10%
B
2
1
40%
C
−
3
1
20%
D
None of these
30%
Solution:
x
→
∞
lim
x
[
tan
−
1
(
x
+
2
x
+
1
)
−
tan
−
1
(
x
+
2
x
)
]
=
x
→
∞
lim
x
tan
−
1
(
1
+
x
+
2
x
+
1
⋅
x
+
2
x
x
+
2
x
+
1
−
x
+
2
x
)
=
x
→
∞
lim
x
tan
−
1
(
2
x
2
+
5
x
+
4
x
+
2
)
=
x
→
∞
lim
x
(
2
x
2
+
5
x
+
4
x
+
2
tan
−
1
(
2
x
2
+
5
x
+
4
x
+
2
)
)
×
2
x
2
+
5
x
+
4
x
(
x
+
2
)
=
1
×
2
1
=
2
1