We have, x→∞limx20∫xet3−x3dt =x→∞limx2e−x30∫xet3dt =x→∞limex3x20∫xet3dt
Apply L Hospital’s rule =x→∞lim3x2ex32x0∫xet3dt+x2ex3 =x→∞lim3x2ex320∫xet3dt+x2ex3
Again Apply L Hospital’s rule, we get =x→∞lim3ex3+9x3ex32ex3+ex3+3x3ex3 =x→∞limex3(3+9x3)ex3(3+3x3)=31