Q.
The lengths of the tangent drawn from any point on the circle 15x2+15y2−48x+64y=0 to the two circles 5x2+5y2−24x+32y+75=0 and 5x2+5y2−48x+64y+300=0 are in the ratio of
Let P(h,k) be a point on the circle 15x2+15y2−48x+64y=0
Then the lengths of the tangents from P(h,k) to 5x2+5y2−24x+32y+75=0 5x2+5y2−48x+64y+300=0 are PT1=h2+k2−524h+532k+15
and PT2=h2+k2−548h+564k+60
or PT1=1548h−1564k−524h+532k+15=1532k−1524h+15
(Since (h,k) lies on 15x2−15y2−48x+64y=0 ∴h2+k2−1548h+1564k=0)
and PT2=1548h−564k−548h+564k+60 =−1596h+15128k+60=2−1524h+1532k+15=2PT1 ⇒PT1:PT2=1:2