Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The length of the subtangent to the curv x2y2 = a4 at (-a, a) is
Q. The length of the subtangent to the curv
x
2
y
2
=
a
4
at
(
−
a
,
a
)
is
2962
219
COMEDK
COMEDK 2011
Application of Derivatives
Report Error
A
3
a
7%
B
2
a
49%
C
a
33%
D
4
a
11%
Solution:
We have,
x
2
y
2
=
a
4
⇒
y
2
=
x
2
a
4
Differentiating w.r.t. x, we get
2
y
d
x
d
y
=
x
3
−
2
a
4
[
d
x
d
y
]
(
−
a
,
a
)
=
2
(
−
a
)
3
.
a
−
2
a
4
=
1
Length of subtangent
=
∣
∣
d
y
d
x
y
∣
∣
=
∣
∣
1
a
∣
∣
=
a