Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The length of latusrectum of the ellipse 2x2+y2-8x+2y+7=0 , is
Q. The length of latusrectum of the ellipse
2
x
2
+
y
2
−
8
x
+
2
y
+
7
=
0
, is
2004
184
Jharkhand CECE
Jharkhand CECE 2010
Report Error
A
2
B
2
C
8
D
None of these
Solution:
We have, the ellipse
2
x
2
+
y
2
−
8
x
+
2
y
+
7
=
0
2
(
x
2
−
4
x
)
+
(
y
2
+
2
y
)
+
7
=
0
⇒
2
(
x
−
2
)
2
−
8
+
(
y
+
1
)
2
−
1
+
7
=
0
⇒
2
(
x
−
2
)
2
+
(
y
+
1
)
2
=
2
⇒
1
(
x
−
2
)
2
+
2
(
y
+
1
)
2
=
1
Comparing this equation with
a
2
(
x
−
h
)
2
+
b
2
(
y
−
k
)
2
=
1
,
we get
a
2
=
1
,
b
2
=
2
∴
Length of latusrectum
=
b
2
a
2
=
2
⋅
2
1
=
2