Where ∣∣x111y111z∣∣≥0 ⇒x(yz−1)−1(z−1)+(1−y)=0 ⇒xyz−x−y−z+2≥0 ⇒xyz≥x+y+z−2...(1)
For x,y,z,3x+y+z≥3xyz ⇒x+y+z≥3⋅3xyz...(2)
From (1) and (2) xyz≥3⋅3xyz−2 ⇒t3≥3t−2 where t=3xyz ⇒t3−3t+2≥0 ⇒(t−1)(t2+t−2)≥0 ⇒(t−1)(t+2)(t−1)≥0 ⇒(t−1)2(t+2)≥0 ⇒t+2≥0 ⇒t≥−2 ⇒3xyz≥−2 ⇒xyz≥−8