Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The least area of a circle circumscribing any right triangle of area S is
Q. The least area of a circle circumscribing any right triangle of area
S
is
296
121
Application of Derivatives
Report Error
A
π
S
B
2
π
S
C
2
π
S
D
4
π
S
Solution:
S
=
2
x
y
=
constant
Area of the circles
(
A
)
=
π
r
2
=
4
π
(
x
2
+
y
2
)
;
(
x
2
+
y
2
=
4
r
2
)
A
(
x
)
=
4
π
[
x
2
+
(
x
2
S
)
2
]
A
′
(
x
)
=
2
x
−
x
3
8
s
2
=
0
⇒
x
4
=
4
S
2
⇒
x
2
=
2
S
S
2
=
4
x
2
y
2
=
4
2
S
y
⇒
y
2
=
2
S
∴
least area of circle
=
π
r
2
=
4
π
(
x
2
+
y
2
)
=
π
S