f(x)=2x3−3x2−12x+5 and −2≤x≤4
To find maxima, differentiate f(x) & put it equal to o f(x)=6x2−6x−12=0 ⇒x2−x−2=0 ⇒x2−2x+x−2=0 ⇒x(x−2)+1(x−2)=0 (x−2)(x+1)=0 x=2,−1 f′′(x)=12x−6 f(2)=18>0 ∴ At x=2, value of f(x) is minimum f(−1)=−18<0 ∴x=−1 can be point of maxima ∴ We check value of f(x) at x=−2,2,−1,4 f(−2)=−16−12+24+5=1 f(2)=16−12−24+5=−15 f(−1)=−2−3+12+5=12 f(4)=128−48−48+5=37 ∴ At x=4,f(x) is maximum.