x12−x9+x4−x+1>0
Here, three cases arises:
Case I When x≤0⇒x12>0,−x9>0,x4>0,−x>0 ∴x12−x9+x4−x+1>0,∀x≤0 ...(i)
Case II When 0<x≤1 x9<x4 and x<1⇒−x9+x4>0 and 1−x>0 ∴x12−x9+x4−x+1>0,∀0<x≤1 ...(ii)
Case III When x>1⇒x12>x9 and x4>x ∴x12−x9+x4−x+1>0,∀x>1 ...(iii)
From Eqs. (i), (ii) and (iii), the above equation holds for all x∈ R
Hence , option (d) is the correct answer.