Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The interval [0,4] is divided into n equal sub-intervals by the points x0, x1, x2, ldots ldots, xn-1, xn where 0=x0< x1< x2< x3 ldots ldots< xn=4. If δ x=xi-xi-1 for i=1,2,3, ldots . . n then the value of undersetδ x arrow 0 textLim displaystyle∑i=1n xi δ x is
Q. The interval
[
0
,
4
]
is divided into
n
equal sub-intervals by the points
x
0
,
x
1
,
x
2
,
……
,
x
n
−
1
,
x
n
where
0
=
x
0
<
x
1
<
x
2
<
x
3
……
<
x
n
=
4
. If
δ
x
=
x
i
−
x
i
−
1
for
i
=
1
,
2
,
3
,
…
..
n
then the value of
δ
x
→
0
Lim
i
=
1
∑
n
x
i
δ
x
is
273
89
Integrals
Report Error
A
1
B
2
C
3
D
8
Solution:
L
=
δ
x
→
0
Lim
δ
x
(
x
1
+
x
2
+
x
3
+
…
..
+
x
n
)
=
n
→
∞
Lim
n
4
[
n
4
+
n
8
+
n
12
+
……
.
+
4
⋅
n
n
]
(
δ
x
=
n
4
)
=
n
→
∞
Lim
n
2
16
(
1
+
2
+
3
+
……
+
n
)
=
n
→
∞
Lim
n
2
16
⋅
2
n
(
n
+
1
)
=
8