Q. The interval $[0,4]$ is divided into $n$ equal sub-intervals by the points $x_0, x_1, x_2, \ldots \ldots, x_{n-1}, x_n$ where $0=x_0< x_1< x_2< x_3 \ldots \ldots< x_n=4$. If $\delta x=x_i-x_{i-1}$ for $i=1,2,3, \ldots . . n$ then the value of $\underset{\delta x \rightarrow 0}{\text{Lim}} \displaystyle\sum_{i=1}^n x_i \delta x$ is
Integrals
Solution: