We have, x2(x2−1)dxdy+x(x2+1)y=x2−1 dxdy+x(x2−1)x2+1y=x21 ⇒IF=ex(x2−1)x2+1 ∴=e1x(x−1)(x+1)x2+1dx
Let x(x−1)(x+1)x2+1=xA+x−1B+x+1C⇒x2+1=A(x−1)(x+1)+Bx(x+1)+Cx(x−1)
Put x=0, ∴1=−A ⇒A=−1
Put x=1, ∴2=2B ⇒B=1
Put x=−1, ∴2=2C ⇒C=1 ∴x(x−1)(x+1)x2+1=x−1+x−11+x+11 ∴IF=e∫(x−1+x−11+x+11)dx =e[−logx+log(x−1)+log(x+1)] =elog(xx2−1)=xx2−1 =x−x1