Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The integral I= displaystyle ∫ 2(2x + x) dx=λ .(22x)+C (where, C is the constant of integration). Then the value of √λ is equal to
Q. The integral
I
=
∫
2
(
2
x
+
x
)
d
x
=
λ
.
(
2
2
x
)
+
C
(where,
C
is the constant of integration). Then the value of
λ
is equal to
2241
193
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
A
l
n
4
1
11%
B
(
l
n
2
)
2
1
46%
C
l
n
2
1
39%
D
(
l
n
4
)
2
1
4%
Solution:
Given,
I
=
∫
2
2
x
.
2
x
d
x
Let,
2
2
x
=
t
⇒
2
2
x
(
.2
)
x
.
(
l
n
2
)
2
d
x
=
d
t
⇒
2
2
x
(
.2
)
x
d
x
=
(
l
n
2
)
2
d
t
Thus,
I
=
∫
(
l
n
2
)
2
d
t
=
(
l
n
2
)
2
t
+
C
=
(
l
n
2
)
2
2
2
x
+
C
∴
λ
=
(
l
n
2
)
2
1
⇒
λ
=
l
n
2
l