Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The integral I= displaystyle ∫ 0100 π [t a n- 1 x]dx , (where, [.] represents the greatest integer function) has the value Kπ +tan p, then the value of K+p is equal to
Q. The integral
I
=
∫
0
100
π
[
t
a
n
−
1
x
]
d
x
, (where,
[
.
]
represents the greatest integer function) has the value
K
π
+
t
an
p
,
then the value of
K
+
p
is equal to
2949
229
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
A
101
21%
B
99
32%
C
100
π
25%
D
99
π
21%
Solution:
The given integral is
I
=
∫
0
t
a
n
1
0
d
x
+
∫
t
a
n
1
100
π
1
d
x
(as
tan
−
1
x
∈
(
1
,
2
π
)
,
∀
x
>
tan
1
)
⇒
I
=
100
π
−
tan
1
=
100
π
+
tan
(
−
1
)
∴
k
=
100
,
p
=
−
1
∴
k
+
p
=
99