Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The integral displaystyle∫ (dx/(1+ √x) √x - x2) is equal to (where C is a constant of integration)
Q. The integral
∫
(
1
+
x
)
x
−
x
2
d
x
is equal to (where
C
is a constant of integration)
5807
207
JEE Main
JEE Main 2016
Integrals
Report Error
A
−
2
1
−
x
1
+
x
+
C
0%
B
−
2
1
+
x
1
−
x
+
C
80%
C
−
1
+
x
1
−
x
+
C
10%
D
2
1
−
x
1
+
x
+
C
10%
Solution:
I
=
∫
(
1
+
x
)
x
−
x
2
d
x
put
x
=
cos
2
θ
d
x
=
−
2
cos
θ
sin
θ
d
θ
I
=
∫
(
1
+
c
o
s
θ
)
c
o
s
θ
s
i
n
θ
−
2
s
i
n
θ
c
o
s
θ
d
θ
=
−
2
∫
2
c
o
s
2
θ
/2
d
θ
=
−
∫
sec
2
(
2
θ
)
d
θ
∴
cos
θ
=
x
=
−
2
tan
θ
/2
+
C
1
+
t
a
n
2
θ
/2
1
−
t
a
n
2
θ
/2
=
x
=
−
2
1
+
x
1
−
x
+
c
⇒
tan
2
(
2
θ
)
=
1
+
x
1
−
x