PLAN Apply the property a∫bf(x)dx=a∫bf(a+b−x)dx and then add.
Let =2∫4logx2+log(36−12x+x2)logx2dx =2∫42logx+log(6−x)22logxdx=2∫42[logx+log(6−x)]2logxdx ⇒I=2∫4[logx+log(6−x)]logxdx....(i) ⇒I=2∫4log(6−x)+logxlog(6−x)dx....(ii) [∵a∫bf(x)dx=a∫bf(a+b−x)dx]
On adding Eqs. (i) and (ii), we get 2I=2∫4logx+log(6−x)logx+log(6−x)dx ⇒2I=2∫4dx=[x]24⇒2I=2 ⇒2I=2⇒I=1