Let the height of the cone =h
and the radius of the cone =r
Given, radius of the sphere =R
Now, In ΔOPB ⇒R2=r2+(h−R)2 ⇒r2=R2−(h−R)2 =(R+h−R)(R−h+R) ⇒r2=h(2R−h)
The volume of the cone is V=31πr2h ⇒V=31πh(2R−h)h ⇒V=3π(2Rh2−h3)
Differentiating with r to h dhdV=3π(4Rh−3h2)
For maximum or minimum value of volume dhdV=0 ⇒3π(4Rh−3h2)=0 ⇒h(4R−3h)=0 ⇒h=0,h=34R (Not possible)
Now, dh2d2V=3π(4R−6h) (dh2d2V)(at h=34R)=3π(4R−6⋅34R) =3π(4R−8R)=−34πR⇒ Negative
ie., Maximum Hence, the height of the cone of maximum volume is (34R).