Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The greatest value of x satisfying 21 ≡ 385 (mod x) and 587 ≡ 167 (mod x) is
Q. The greatest value of
x
satisfying
21
≡
385
(mod x) and
587
≡
167
(mod x) is _____
1772
212
KCET
KCET 2010
Report Error
A
28
25%
B
56
25%
C
156
25%
D
32
25%
Solution:
We know that,
a
≡
b
(
mod
x
)
=
x
(
a
−
b
)
Given,
21
≡
385
(
mod
x
)
=
x
(
21
−
385
)
=
−
x
364
...(i)
and
587
≡
167
(
mod
x
)
=
x
(
587
−
167
)
=
x
420
...(ii)
Now, the greatest value of '
x
' satisfying Eq. (i)
and Eq.(ii) =max [LCM of (364,420)]
⇒
x
= max (13,15,28)
⇒
x
=
28