Given, (xcosα+xsinα)10 =x101(x2cosα+sinα)10
General term of the expansion Tt+1=x101×10Ct(x2cosα)10−t(sinα)t =x101×10Ct(x2)10−t(cosα)10−r(sinα)t
For this term to be independent of x, 10−r=5 ⇒r=5 ∴T5+1=x101×10Crx10⋅cos5α⋅sin5α =10Cr(cosα⋅sinα)5 =10Cr(22sinα⋅cosα)5 =25110Cr(sin2α)5 ∴ Greatest value of T6 (term independent of x ) will be 25110C5×(1)=(21)5×10CI