Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The greatest integer less than or equal to ∫ limits12 log 2(x3+1) d x+∫ limits1 log 2 9(2x-1)(1/3) dx is
Q. The greatest integer less than or equal to
1
∫
2
lo
g
2
(
x
3
+
1
)
d
x
+
1
∫
l
o
g
2
9
(
2
x
−
1
)
3
1
d
x
is _____
773
147
JEE Advanced
JEE Advanced 2022
Report Error
Answer:
5
Solution:
f
(
x
)
=
lo
g
2
(
x
3
+
1
)
=
y
x
3
+
1
=
2
y
⇒
x
=
(
2
y
−
1
)
1/3
=
f
−
1
(
y
)
f
−
1
(
x
)
=
(
2
x
−
1
)
1/3
=
∫
1
2
lo
g
2
(
x
3
+
1
)
d
x
+
1
∫
l
o
g
2
9
(
2
x
−
1
)
1/3
d
x
=
∫
1
2
f
(
x
)
d
x
+
1
∫
l
o
g
2
9
f
−
1
(
x
)
d
x
=
2
lo
g
2
9
−
1
=
8
<
9
<
2
7/2
⇒
3
<
lo
g
2
9
<
2
7
=
5
<
2
lo
g
2
9
−
1
<
6
[
2
lo
g
2
9
−
1
]
=
5