We have, (sin−1x)2+(cos−1x)2 =(sin−1x+cos−1x)2−2sin−1x⋅cos−1x =4π2−2sin−1x(2π−sin−1x) =4π2−πsin−1x+2(sin−1x)2 =2[(sin−1x)2−2πsin−1x+8π2] =2[(sin−1x−4π)2+16π2]
Thus, the least value is 2(16π2)8π2
and the greatest value is 2[(2−π−4π)2+16π2]45π2