Q.
The gradient of the curve passing through (4, 0) is given by dxdy−xy+(x+2)(x−3)5x=0 if the point (5, a) lies on the curve, then the value of a is
The differential equation is dxdy−xy=−(x+2)(x−3)5x I.F=e∫(−x1)dx=e−lnx=x1
Solution is y(x1)=∫(x1)×(x+2)(x−3)−5xdx=ln(x−3x+2)+C
It passes through (4,0), so C=−ln6 ∴y=xln{6(x−3)(x+2)}
Putting (5,a), we get a=5ln(127)