The given differential equation is y2dx+(x2−xy+y2)dy=0. ⇒dydx=−(y2x2−xy+y2)....(i) =−(yx)2+(yx)−1
Now, put yx=v ⇒x=vy⇒dydx=v+ydydv ∴v+ydydv=−v2+v−1 ⇒ydydv=−v2+v−1−v=−(v2+1) ⇒ydydv=−(v2+1) ⇒v2+1dv=−ydy
On integrating both sides, we get ∫v2+1dv=−∫ydy ⇒tan−1v=−log∣y∣+C ⇒tan−1(yx)=−log∣y∣+C ⇒tan−1(yx)+log∣y∣=C