∵sin3x=3sinx−4sin3x⇒sin3x=41[3sinx−sin3x]
The given equation reduces to 41(3sinx−sin3x)+41(3sin(32π+x)−sin(2π+3x)+41(3sin(34π+x)−sin(4π+3x)+43cos2x=0 3{sinx+sin(32π+x)+sin(34π+x)}−{sin3x+sin(2π+3x)+sin(4π+3x)}+3cos2x=0 3{sinx+2sinxcos32π}−3sin3x+3cos2x=0 ⇒sin 3x=cos 2x ⇒cos(2π−3x)=cos 2x⇒2x=2kπ±(2π−3x) ⇒5x=2kπ+2π=(4k+1)2π∀k∈Z or x=−2kπ+2π,∀k∈Z ⇒x=(4k+1)10π, ∀k∈Z{cosx=0}