Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The general solution of the equation (√3-1) sin θ +(√3+1) cos θ =2 is
Q. The general solution of the equation
(
3
−
1
)
sin
θ
+
(
3
+
1
)
cos
θ
=
2
is
1657
205
Rajasthan PET
Rajasthan PET 2005
Report Error
A
2
nπ
±
4
π
+
12
π
B
nπ
+
(
−
1
)
n
4
π
+
12
π
C
2
nπ
±
4
π
−
12
π
D
nπ
+
(
−
1
)
n
4
π
−
12
π
Solution:
Let
3
+
1
=
r
cos
α
and
3
−
1
=
r
sin
α
∴
r
2
cos
2
α
+
r
2
sin
2
α
=
(
3
+
1
)
2
+
(
3
−
1
)
2
⇒
r
2
=
3
+
1
+
2
3
+
3
+
1
−
2
3
⇒
r
2
=
8
⇒
r
=
2
2
and
tan
α
=
r
c
o
s
α
r
s
i
n
α
=
3
+
1
3
−
1
=
1
+
1/
3
1
−
1/
3
=
1
+
t
a
n
4
π
.
t
a
n
6
π
t
a
n
4
π
−
t
a
n
6
π
=
tan
(
4
π
−
6
π
)
⇒
tan
α
=
tan
(
π
/12
)
⇒
α
=
12
π
Given, equation is
(
3
−
1
)
sin
θ
+
(
3
+
1
)
cos
θ
=
2
⇒
r
sin
α
sin
θ
+
r
cos
α
cos
θ
=
2
⇒
2
2
cos
(
θ
−
α
)
=
2
⇒
cos
(
θ
−
12
π
)
=
2
2
2
=
cos
(
4
π
)
⇒
θ
−
12
π
=
2
nπ
±
4
π
⇒
θ
=
2
nπ
±
4
π
+
12
π