Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The general solution of the differential equation (x + y + 3) (dy/dx) = 1 is
Q. The general solution of the differential equation
(
x
+
y
+
3
)
d
x
d
y
=
1
is
2197
207
KEAM
KEAM 2016
Differential Equations
Report Error
A
x
+
y
+
3
=
C
e
y
B
x
+
y
+
4
=
C
e
y
C
x
+
y
+
3
=
C
e
−
y
D
x
+
y
+
4
=
C
e
−
y
E
x
+
y
+
4
e
y
=
C
Solution:
We have,
(
x
+
y
+
3
)
d
x
d
y
=
1
⇒
(
x
+
y
+
3
)
=
d
y
d
x
Let
x
+
y
+
3
=
t
On differentiating w.r.t.y, we get
d
y
d
x
+
1
=
d
y
d
t
⇒
d
y
d
t
=
t
+
1
[
∵
from Eq. (i),
t
=
d
y
d
x
]
On integrating both sides,
∫
(
t
+
1
)
d
t
=
∫
d
y
⇒
lo
g
(
t
+
1
)
=
y
+
C
1
⇒
lo
g
(
x
+
y
+
3
+
1
)
=
y
+
C
1
∴
x
+
y
+
4
=
C
e
y
[where ,
c
=
e
c
1
]