Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The general solution of the differential equation (x-y2) d x+y(5 x+y2) d y=0 is :
Q. The general solution of the differential equation
(
x
−
y
2
)
d
x
+
y
(
5
x
+
y
2
)
d
y
=
0
is :
160
121
JEE Main
JEE Main 2022
Differential Equations
Report Error
A
(
y
2
+
x
)
4
=
C
∣
∣
(
y
2
+
2
x
)
3
∣
∣
B
(
y
2
+
2
x
)
4
=
C
∣
∣
(
y
2
+
x
)
3
∣
∣
C
∣
∣
(
y
2
+
x
)
3
∣
∣
=
C
(
2
y
2
+
x
)
4
D
∣
∣
(
y
2
+
2
x
)
3
∣
∣
=
C
(
2
y
2
+
x
)
4
Solution:
(
x
−
y
2
)
d
x
+
y
(
5
x
+
y
2
)
d
y
=
0
d
x
d
y
=
y
(
5
x
+
y
2
)
y
2
−
x
.
Let
y
2
=
v
d
x
2
y
d
y
=
2
(
5
x
+
y
2
y
2
−
x
)
d
x
d
v
=
2
(
5
x
+
v
v
−
x
)
v
=
k
x
k
+
x
d
x
d
k
=
2
(
5
x
+
k
x
k
x
−
x
)
x
d
x
d
k
=
−
k
+
5
(
k
2
+
3
k
+
2
)
∫
(
k
+
1
)
(
k
+
2
)
(
5
+
k
)
d
k
=
∫
−
x
d
x
∫
(
k
+
1
4
−
k
+
2
3
)
d
k
=
−
∫
x
d
x
4
ln
(
k
+
1
)
−
3
ln
(
k
+
2
)
=
−
ln
x
+
ln
c
(
k
+
2
)
3
(
k
+
1
)
4
=
−
ln
x
+
ln
c
c
(
y
2
+
2
x
)
3
=
(
y
2
+
x
)
4