The given differential equation is (x3−3xy2)dx=(y3−3x2y)dy dxdy=y3−3x2yx3−3xy2....(i)
So, put y=vx ⇒dxdy=v+xdxdv
Then, Eq. (i) becomes ⇒v+xdxdv=(vx)3−3x2(vx)x3−3x(vx)2 ⇒v+xdxdv=v3−3v1−3v2 ⇒xdxdv=v3−3v1−3v2−v ⇒xdxdv=v3−3v1−3v2−v4+3v2 ⇒xdxdv=v3−3v1−v4 ⇒(1−v4v3−3v)dv=xdx
On integrating both sides, we get ∫(1−v4v3−3v)dv=∫xdx ⇒∫(1=v4v3−3v)dv=logx+logC1....(ii)
Now, ∫(1−v4v3−3v)dv=∫1−v4v3dv−3∫1−v4vdv ⇒∫(1−v4v3−3v)dv=I1−3I2.....(iii)
where, I1=∫1−v4v3dv and I2=∫1−v4vdv
Put 1−v4=t⇒−4v3=dvdt⇒v3dv=−4dt ∴l1=∫4t−dt=−41logt=−41log(1−v4) and
and I2=∫1−v4vdv=∫1−(v2)2vdv
Put v2=z⇒vdv=2dz ⇒l2=21∫1−z2dz=2×21log∣∣1−z1+z∣∣ =41log∣∣1−v21+v2∣∣(∵z=v2) (∵∫a2−x2dx=2a1log∣a−xa+x)
On substituting the values of I1 and I2 in Eq. (iii), we get ∫(1−v4v3−3v)dv=−41log(1−v4)−43log∣∣1−v21+v2∣∣
Therefore, Eq. (ii) becomes −41log(1−v4)−43log∣∣1−v21+v2∣∣=logx+logC1 ⇒−41log[(1−v4)(1−v21+v2)3]=logC1x ⇒−41log[(1−v2)(1+v2)×(1−v2)3(1+v2)3]=logC1x⇒log[(1−v2)2(1+v2)4]−41=logC1x ⇒[(1−v2)2(1+v2)4]−41=C1x ⇒(1−v2)2(1+v2)4=(C1x)−4⇒(1−x2y2)2(1+x2y2)4=C4x41 ⇒x4(x2−y2)2(x2+y2)4=C14x41(∵v=y/x) ⇒(x2−y2)2=C14(x2+y2)4 x2−y2=C(x2+y2)2( where, C=C12)