Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The general solution of the differential equation x2dy - 2xydx = x4 cos x dx is
Q. The general solution of the differential equation
x
2
d
y
−
2
x
y
d
x
=
x
4
cos
x
d
x
is
5012
135
KCET
KCET 2020
Differential Equations
Report Error
A
y
=
x
2
sin
x
+
c
x
2
31%
B
y
=
x
2
sin
x
+
c
40%
C
y
=
sin
x
+
c
x
2
16%
D
y
=
cos
x
+
c
x
2
13%
Solution:
x
2
d
y
−
2
x
y
d
x
=
x
4
cos
x
d
x
(
d
x
d
y
=
x
2
x
4
cos
x
+
2
x
y
)
⇒
d
y
/
d
x
−
2
y
/
x
=
x
2
cos
x
I.F.
=
e
∫
−
2/
x
d
x
=
e
−
2
l
o
g
x
=
1/
x
2
Therefore, the general solution is
(
y
(
x
2
1
)
=
∫
x
2
1
(
x
2
cos
x
)
d
x
=
s
in
x
+
c
)
∴
y
=
x
2
(
sin
x
+
c
)
=
x
2
sin
x
+
c
x
2