sin2x(dxdy−tanx)−y=0,
or, dxdy=sin2xy+tanx
or, dxdy−ycosec2x=tanx...(1)
Now, integrating factor (I.F)=e∫−cosec2x
or, I.F.=e−21log∣tanx∣=elog(tanx)−1 =tanx1=cotx
Now, general solution of eq. (1) is written as y(I.F.)=∫Q(I.F.)dx+c ∴ycotx=∫tanx.cotxdx+c ∴ycotx=∫1.dx+c ∴ycotx=x+c