Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The general solution of the differential equation (dy/dx)=e(x2/2)+xy is
Q. The general solution of the differential equation
d
x
d
y
=
e
2
x
2
+
x
y
is
5293
212
Differential Equations
Report Error
A
y
=
c
e
2
−
x
2
16%
B
y
=
c
e
2
x
2
22%
C
y
=
(
x
+
c
)
e
2
x
2
45%
D
y
=
(
c
−
x
)
e
2
x
2
16%
Solution:
d
x
d
y
=
e
x
2
/2
+
x
y
⇒
d
x
d
y
−
x
⋅
y
=
e
x
2
/2
It is a linear differential equation with
I
.
F
.
=
e
−
∫
x
d
x
=
e
−
x
2
/2
Now, solution is
y
⋅
e
−
x
2
/2
=
∫
e
−
x
2
/2
e
x
2
/2
d
x
+
c
⇒
y
⋅
e
−
x
2
/2
=
x
+
c
⇒
y
=
(
x
+
c
)
e
x
2
/2