Given : dx2d2y+2dxdy+y=2e3x
The auxiliary equation is D2+2D+1=0orm2+2m+1=0 ⇒(m+1)(m+1)=0⇒m=−1,−1
i.e., repeated roots ∴ Complementary function = (c1+c2x)e−x
Now Particular Integral (P.I.) =D2+2D+11.2e3x[D=3]
P.I=32+2.3+11.2.e3x=162e3x=8e3x
Solution y = C. F. + P. I. ⇒y=(c1+c2x)e−x+8e3x