Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The general solution of the differential equation (2x - y + 1)dx + (2 y - x + 1)dy = 0 is
Q. The general solution of the differential equation
(
2
x
−
y
+
1
)
d
x
+
(
2
y
−
x
+
1
)
d
y
=
0
is
1899
232
KCET
KCET 2005
Differential Equations
Report Error
A
x
2
+
y
2
+
x
y
−
x
+
y
=
C
18%
B
x
2
+
y
2
−
x
y
+
x
+
y
=
C
42%
C
x
2
−
y
2
+
2
x
y
−
x
+
y
=
C
27%
D
x
2
−
y
2
−
2
x
y
+
x
−
y
=
C
13%
Solution:
Given differential equation is
(
2
x
−
y
+
1
)
d
x
+
(
2
y
−
x
+
1
)
d
y
=
0
⇒
2
x
d
x
+
2
y
d
y
−
(
y
d
x
+
x
d
y
)
+
d
x
+
d
y
=
0
⇒
(
2
x
d
x
+
2
y
d
y
)
−
d
(
x
y
)
+
d
x
+
d
y
=
0
On integrating both sides, we get
x
2
+
y
2
−
x
y
+
x
+
y
=
c