1+x2+y2+x2y2+xydxdy=0 ⇒(1+x)2(1+y2)+xydxdy=0 ⇒1+x21+y2=−xydxdy ⇒∫1+y2ydy=−∫x1+x2dx.....(1)
Now put 1+x2=u2 and 1+y2=v2 2xdx=2udu and 2ydy=2vdv ⇒xdx=udu and ydy=vdv
substitude these values in equation (1) ∫vvdv=−∫u2−1u2⋅du ⇒∫dv=−∫u2−1u2−1+1du ⇒v=−∫(1+u2−11)du ⇒v=−u−21loge∣∣u+1u−1∣∣+c ⇒1+y2=−1+x2+21loge∣∣1+x2−11+x2+1∣∣+c ⇒1+y2+1+x2=21loge∣∣1+x2−11+x2+1∣∣+c