tan(2πsinθ)=cot(2πcosθ) ⇒tan(2πsinθ)=tan(2π−2πcosθ) ⇒2πsinθ=rπ+2π−2πcosθ,r∈Z ⇒sinθ+cosθ=(2r+1),r∈Z ⇒21sinθ+21cosθ=22r+1,r∈Z ⇒cos(θ−4π)=22r+1,r∈Z ⇒cos(θ−4π)=21 or −21<br/><br/>(forr=0,−1) ⇒θ−4π=2rπ±4π,r∈Z ⇒θ=2rπ±4π+4π,r∈Z ⇒θ=2rπ,2rπ+2π,r∈Z
But θ=2rπ+2π,r∈Z does not satisfy the given equation. ∴θ=2rπ,r∈Z