Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The function y=f(x) is the solution of the differential equation (d y/d x)+(x y/x2-4)=(7 x6+2 x/√4-x2) in (-2,2) satisfying f(0)=1. If ∫-√3 f(x) d x=a π+b √3, a, b are rational numbers, then value of 3 a+2 b is
Q. The function
y
=
f
(
x
)
is the solution of the differential equation
d
x
d
y
+
x
2
−
4
x
y
=
4
−
x
2
7
x
6
+
2
x
in
(
−
2
,
2
)
satisfying
f
(
0
)
=
1
. If
∫
−
3
f
(
x
)
d
x
=
aπ
+
b
3
,
a
,
b
are rational numbers, then value of
3
a
+
2
b
is
1530
178
Differential Equations
Report Error
A
4
B
5
C
6
D
none of these
Solution:
d
x
d
y
4
−
x
2
−
4
−
x
2
x
y
=
7
x
6
+
2
x
d
(
4
−
x
2
⋅
y
)
=
(
7
x
6
+
2
x
)
d
x
⇒
4
−
x
2
y
=
x
7
+
x
2
+
C
∵
f
(
0
)
=
1
⇒
c
=
2
∴
y
=
4
−
x
2
x
7
+
x
2
+
2
−
3
∫
3
(
4
−
x
2
x
7
+
4
−
x
2
x
2
+
2
)
d
x
=
2
0
∫
3
4
−
x
2
x
2
+
2
d
x
put
x
=
2
sin
θ
⇒
d
x
=
2
cos
θ
d
θ
=
2
0
∫
π
/3
2
c
o
s
θ
4
s
i
n
2
θ
+
2
⋅
2
cos
θ
d
θ
=
2
0
∫
π
/3
[
4
−
2
cos
2
θ
]
d
θ
=
2
[
3
4
π
−
2
3
]
=
3
8
π
−
3
∴
a
=
3
8
,
b
=
−
1