Q. The function $y=f(x)$ is the solution of the differential equation $\frac{d y}{d x}+\frac{x y}{x^{2}-4}=\frac{7 x^{6}+2 x}{\sqrt{4-x^{2}}}$ in $(-2,2)$ satisfying $f(0)=1$. If $\int_{-}^{\sqrt{3}} f(x) d x=a \pi+b \sqrt{3}, a, b$ are rational numbers, then value of $3 a+2 b$ is
Differential Equations
Solution: