We have, y=(2+cosθ)4sinθ−θ
On differentiating w.r.t. θ, we get dθdy=dθd[2+cosθ4sinθ−θ] =(2+cosθ)2(2+cosθ)dθd(4sinθ)−4sinθdθd(2+cosθ)−1 =(2+cosθ)24cosθ(2+cosθ)−4sinθ(−sinθ)−1 =(2+cos2θ)28cosθ+4cos2θ+4sin2θ−1 =(2+cosθ)28cosθ+4(cos2θ+sin2θ)−1 =(2+cos0)28cosθ+4−1=(2+cos0)28cosθ+4−(2+cosθ)2 =(2+cosθ)28cosθ+4−4−cos2θ−4cosθ =(2+cosθ)24cosθ−cos2θ dθdy=(2+cosθ)2cosθ(4−cosθ) ∵−1≤−cosθ≤1 3≤4−cosθ≤5 ⇒4−cosθ>0
Hence, (2+cosθ)24−cosθ>0 ∵y is increasing. ∴dθdy≥0 ⇒(2+cosθ)2cosθ(4−cosθ)>0⇒cosθ>0[∵(2+cosθ)24−cosθ>0]
We know that cosθ is positive when it lies on first quadrant. ∴θ∈[0,2π]
Hence, given function is increasing in interval [0,2π].
Note Since, it is a continuous function, for increasing function, f′(x)≥0. (ii) for strictly increasing function, f′(x)>0.