Given, y=2x−x2
By differentiating both side w.r.t. 'x', we get dxdy=22x−x21×(2−2x) =2x−x21−x
Here, dxdy is defined for 2x−x2>0
i.e. 0<x<2
Now, dxdy>0
When. 1−x>0 [∵2x−x2 is always positive] ⇒x<1 ∴ Given function increases in 0<x<1.
And dxdy<0
When,∫−x<0 [∵2x−x2 is always positive] x>1 ∴ Given function decreases in 1<x<2.