Let z=sinx(1+cosx)
or z=sinx+21sin2x
On differentiating w.r.t. x, we get dxdz=cosx+cos2x
For maximum or minimum, put dxdz=0 ⇒cosx+cos2x=0 ⇒2cos2x−1+cosx=0 ⇒(cosx+1)(2cosx−1)=0 ⇒cosx=−1,21 ⇒x=3π,π
But 0≤x≤2π,
therefore we take only x=3π ∴dx2d2z=−sinx−2sin2x=− ve, for x=3π ∴ It is maximum at x=3π