Q.
The function f(x)={x[x],(x−1)x, if 0≤x<2 if 2≤x<3 is is
391
178
Continuity and Differentiability
Report Error
Solution:
Here, f(x)={x[x], if 0≤x<2(x−1)x, if 2≤x<3 at x=2 LHD=Lf′(2)=h→0lim−hf(2−h)−f(2) =h→0lim−h(2−h)[2−h]−(2−1)2 =h→0lim−h(2−h)(1)−2[∵(2−h)=1] =h→0lim−h2−h−2=h→0lim−h−h=1
RHD =Rf′(2)=h→0limhf(2+h)−f(2) =h→0limh(2+h−1)(2+h)−(2−1)(2) =h→0limh(h+1)(2+h)−2 =h→0limhh2+3h+2−2 =h→0limhh2+3h=h→0limhh(h+3) =3 ∵LHD=RHD ∴f(x) is not differentiable at x=2.