Ltx→1−f(x)=Ltx→1(4x2−23x+413) =41−23+413=2 Ltx→1+f(x)=Ltx→1(x−3)=2 ∴Ltx→1f(x)=2=f(1) ∴f(x) is continuous at x=1
Again Lf′(1)=Ltx→1−x−1f(x)−f(1) =Ltx→1x−14x2−23x+413−2=Ltx→14(x−1)x2−6x−5 =Ltx→14(x−5)=41−5=−1 Rf′(1)=Ltx→1+x−1f(x)−f(1) =Ltx→1x−13−x−2=−1 ∴f′(1)=−1 ∴f′(x) is derivable at x = 1