Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The function f (x)=x3+ax2+bx+c, a2 le 3b has
Q. The function
f
(
x
)
=
x
3
+
a
x
2
+
b
x
+
c
,
a
2
≤
3
b
has
1708
226
VITEEE
VITEEE 2009
Application of Derivatives
Report Error
A
one maximum value
17%
B
one minimum value
22%
C
no extreme value
24%
D
one maximum and one minimum value
37%
Solution:
Given,
f
(
x
)
=
x
3
+
a
x
2
+
b
x
+
c
,
a
2
≤
3
b
On differentiating w.r.t.
x
, we get
f
′
(
x
)
=
3
x
2
+
2
a
x
+
b
Put
f
′
(
x
)
=
0
⇒
3
x
2
+
2
a
x
+
b
=
0
⇒
x
=
2
×
3
−
2
a
±
4
a
2
−
12
b
=
3
−
2
a
±
2
a
2
−
3
b
Since,
a
2
≤
3
b
,
∴
x
has an imaginary value.
Hence, no extreme value of
x
exist.