We have f(x)=x3−4x2+4x+3 ∴f′(x)=3x2−8x+4
Now, f′(x)=0 ⇒3x2−8x+4=0 ⇒3x2−6x−2x+4=0 ⇒3x(x−2)−2(x−2)=0 ⇒(x−2)(3x−2)=0 ⇒x=2,32
Now, f(−1)=−1−4−4+3=−6 f(2/3)=278−4×94+4×32+3 =278−48+72+81=27113 f(2)=8−14+8+3=5 f(3)=27−36+12+3=6 ∴f(x) has minimum value at x=−1