Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The function f ( x ), that satisfies the condition f ( x )= x +∫ limits0π / 2 sin x ⋅ cos y f ( y ) dy, is :
Q. The function
f
(
x
)
, that satisfies the condition
f
(
x
)
=
x
+
0
∫
π
/2
sin
x
⋅
cos
y
f
(
y
)
d
y
, is :
2994
244
JEE Main
JEE Main 2021
Integrals
Report Error
A
x
+
3
2
(
π
−
2
)
sin
x
B
x
+
(
π
+
2
)
sin
x
C
x
+
2
π
sin
x
D
x
+
(
π
−
2
)
sin
x
Solution:
f
(
x
)
=
x
+
0
∫
π
/2
sin
x
cos
y
f
(
y
)
d
y
f
(
x
)
=
x
+
sin
x
к
0
∫
π
/2
cos
y
f
(
y
)
d
y
⇒
f
(
x
)
=
x
+
K
sin
x
⇒
f
(
y
)
=
y
+
K
sin
y
Now
K
=
0
∫
π
/2
cos
y
(
y
+
K
sin
y
)
d
y
K
=
0
∫
π
/2
Apply IBP
y
cos
d
y
+
0
∫
π
/2
Put sin
y
t
cos
y
sin
y
d
y
K
=
(
y
sin
y
)
0
π
/2
−
0
∫
π
/2
sin
d
y
+
K
∫
0
1
t
d
t
⇒
K
=
2
π
−
1
+
K
(
2
1
)
⇒
K
=
π
−
2
So
f
(
x
)
=
x
+
(
π
−
2
)
sin
x