Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The function f(x)=tan x+(1/x),∀ x∈ (0 , (π /2)) has
Q. The function
f
(
x
)
=
t
an
x
+
x
1
,
∀
x
∈
(
0
,
2
π
)
has
1285
165
NTA Abhyas
NTA Abhyas 2020
Application of Derivatives
Report Error
A
one local maximum
B
one local minimum
C
one local maximum and one minimum
D
no local maximum or minimum
Solution:
d
x
d
y
=
se
c
2
x
−
x
2
1
=
(
cos
)
2
x
.
x
2
(
x
−
cos
x
)
(
x
+
cos
x
)
Hence, at
α
sign of
d
x
d
y
changes from negative to positive
i.e.,
y
=
f
(
x
)
has a local minimum