(i) −1≤2x−x2≤1 (for sin−1 to be defined) ⇒−1≤x2−2x≤1
i.e. x2−2x+1≥0 and x2−2x−1≤0 (x−1)2≥0 and (x−1)2−(2)2≤0 x∈R and (x−1−2)(x−1+2)≤0 ⇒x∈[1−2,1+2∣…
(ii) 2−∣x∣1≥0⇒∣x∣1≤2⇒∣x∣≥21⇒x∈(−∞,−21]∪[21,∞)…
(iii) [x2]=0⇒x2∈/[0,1) ⇒x∈/(−1,1)⇒x∈(−∞,−1]∪[1,∞)…(3)
Hence, (1)∩(2)∩(3) ⇒x∈[1,1+2]