Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The function f(x)=max (1 - x) , (1 + x) , 2 ∀ x∈ R is
Q. The function
f
(
x
)
=
ma
x
{
(
1
−
x
)
,
(
1
+
x
)
,
2
}
∀
x
∈
R
is
2115
202
NTA Abhyas
NTA Abhyas 2020
Continuity and Differentiability
Report Error
A
discontinuous at exactly two points
B
differentiable
∀
x
∈
R
C
differentiable
∀
x
∈
R
−
{
−
1
,
1
}
D
continuous
∀
x
∈
R
−
{
0
,
1
,
−
1
}
Solution:
f
(
x
)
=
⎩
⎨
⎧
1
−
x
2
1
+
x
:
:
:
x
≤
−
1
−
1
<
x
≤
1
x
>
1
Continuity at
x
=
−
1
f
(
−
1
)
=
1
−
(
−
1
)
=
2
f
(
−
1
−
)
=
1
−
(
−
1
)
=
2
f
(
−
1
+
)
=
2
∵
f
(
−
1
)
=
f
(
−
1
−
)
=
f
(
−
1
+
)
∴
continuous at
x
=
−
1
f
(
1
)
=
2
,
f
(
1
−
)
=
2
f
(
1
+
)
=
1
+
1
=
2
∵
f
(
1
−
)
=
f
(
1
)
=
f
(
1
+
)
∴
continuous at
x
=
1
For differentiability,
f
′
(
x
)
=
⎩
⎨
⎧
−
1
0
1
x
<
−
1
−
1
<
x
<
1
x
>
1
at
x
=
−
1
f
′
(
−
1
−
)
=
−
1
,
f
(
−
1
+
)
=
0
∵
f
′
(
−
1
−
)
=
f
′
(
−
1
+
)
⇒
non-differentiable at
x
=
1
f
′
(
1
−
)
=
0
,
f
′
(
1
+
)
=
1
∵
f
′
(
1
−
)
=
f
′
(
1
+
)
⇒
non-differentiable