Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The function f(x) = Kx3 - 9x2 + 9x + 3 is monotonically increasing in each interval, then
Q. The function
f
(
x
)
=
K
x
3
−
9
x
2
+
9
x
+
3
is monotonically increasing in each interval, then
2301
214
Application of Derivatives
Report Error
A
K
<
3
16%
B
K
≤
3
22%
C
K
>
3
52%
D
none of these
9%
Solution:
f
′
(
x
)
=
3
K
x
2
−
18
x
+
9
=
3
(
K
x
2
−
6
x
+
3
)
Since
f
(
x
)
is monotonically increasing
∴
f
′
(
x
)
≥
0
∴
K
x
2
−
6
r
+
3
≥
0
∀
x
∈
R
∴
Δ
=
b
2
−
4
a
c
<
0
,
K
>
0
i.e.,
36
−
12
K
<
0
⇒
36
<
12
K
⇒
3
<
K
⇒
K
>
3
⋅
[so that
K
>
0
]
Hence
K
>
3