Here f(x)={∣x−3∣,4x2−23x+413,x≥1x<1 is ∴RHL at x=1, h→0lim∣1+h−3∣=2
LHL at x=1. h→0lim4(1−)2−23(1−h)+413 =41−23+413=414−23=2 ∴f(x) is continuous at x=1
Again, f(x)=⎩⎨⎧−(x−3),(x−3),4x2−23x+413,1≤x<3x≥3x<1 ∴f′(x)=⎩⎨⎧−1,1,2x−23,1≤x<3x≥3x<<br/>1